Comportamiento frente al fuego en edificios: conocimientos académicos y análisis de perspectiva

Autores/as

DOI:

https://doi.org/10.20435/inter.v23i3.3661

Palabras clave:

comportamiento frente al fuego, comportamiento frente al edificio, seguridad contra incendios, revisión sistemática de la literatura, análisis bibliométrico

Resumen

Con el acelerado crecimiento de la urbanización y el consecuente incremento en el número de edificaciones, hubo un incremento de proyectos y construcciones rápidas, sin criterios mínimos que permitan el buen desempeño del edificio y cómo se comporta durante los episodios de incendio. En este escenario, este trabajo tiene como objetivo analizar las tendencias en la investigación y el status quo del comportamiento frente al fuego en los edificios en los últimos cinco años, evaluando perspectivas de investigación en el área y propuestas para el rumbo futuro, a través de un enfoque de Revisión Sistemática de la Literatura (RSL) asociado con un análisis bibliométrico. El análisis se realizó utilizando la base de datos Web of Science bajo parámetros como: autores, países y regiones, revistas, áreas de investigación y palabras clave. Para cada criterio, entre todos los resultados recuperados, se evaluaron los que más destacaron en el período estipulado. Se constató que la investigación sobre el comportamiento frente al fuego en proyectos está creciendo, con un total de 402 trabajos publicados. En el análisis de Revisión Sistemática de la Literatura, hubo una tendencia de investigación en relación a los materiales y sistemas estructurales, evaluando el desempeño, comportamiento, resistencia y seguridad de los edificios en condiciones de incendio. Además, los resultados apuntan a una posibilidad de evolución de la tendencia en la investigación sobre metodologías y sistemas de control inteligente aplicados a la gestión de emergencias contra incendios.

Biografía del autor/a

Rejane Martins Viegas, Universidade de Brasília (UnB)

Doutoranda em Arquitetura e Urbanismo pela Universidade de Brasília (UnB). 

João Paulo Lima, Universidade de Brasília (UnB)

Doutorando em Engenharia Civil pela Universidade de Brasília (UnB).

Michele Tereza Carvalho, Universidade de Brasília (UnB)

Professora Adjunta do Departamento de Engenharia Civil e Ambiental na Universidade de Brasília (UnB). 

Caio Frederico e Silva, Universidade de Brasília (UnB)

Professor Adjunto do Departamento de Arquitetura e Urbanismo da Universidade de Brasília.

Citas

ABBAS, H.; AL-SALLOUM, Y.; ELSANADEDY, H.; ALMUSALLAM, T. Ann models for prediction of residual strength of HSC after exposure to elevated temperature. Fire Safety Journal, United Kingdom, v. 106, n. 4, p. 13–28, 2019.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS [ABNT]. NBR 15575–1: Norma de desempenho, 2013. 63 p.

ARIYANAYAGAM, A. D.; MAHENDRAN, M. Fire design rules for load bearing cold-formed steel frame walls exposed to realistic design fire curves. Fire Safety Journal, United Kingdom, v. 77, n. 10, p. 1–20, 2015.

BARTLETT, A.; MCNAMEE, R.; ROBERT, F.; BISBY, L. Comparative energy analysis from fire resistance tests on combustible versus noncombustible slabs. Fire and Materials, United Kingdom, v. 44, n. 3, p. 301–10, 2020.

BEDON, C.; FRAGIACOMO, M. Fire Resistance of Thermally Insulated Log-House Timber Walls. Fire Technology, Netherlands, v. 55, n. 1, p. 307–41, 2019.

BRÍGITTE, G. T. N.; RUSCHEL, R. C. Modelo de informação da construção para o projeto baseado em desempenho: caracterização e processo. Ambiente Construído, Porto Alegre, v. 16, n. 4, p. 9–26, 2016.

CHEN, Y. ;JIN, Q.; FANG, H.; LEI, H.; HU, J.; WU, Y.; CHEN, J.; WANG, C.; WAN, Y. Analytic network process: academic insights and perspectives analysis. Journal of Cleaner Production, United Kingdom, v. 235, p. 1276–94, 2019.

CHENG, M. CHIU, K.; HSIEH, Y.; YANG, I.; CHOU, J.; WU, Y. BIM integrated smart monitoring technique for building fire prevention and disaster relief. Automation in Construction, Netherlands, v. 84, n. 8, p. 14–30, 2017.

CHOW, W. K. Performance-based approach to determining fire safety provisions for buildings in the Asia-Oceania regions. Building and Environment, United Kingdom, v. 91, n. 9, p. 127–37, 2015.

CORREIA, J. R.; BAI, Y.; KELLER, T. A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications. Composite Structures, Netherlands, v. 127, n. 9, p. 267–87, 2015.

COTTA, A. C.; ANDERY, P. R. P. As alterações no processo de projeto das empresas construtoras e incorporadoras devido à NBR 15575 – Norma de Desempenho. Ambiente Construído, Porto Alegre, v. 18, n. 1, p. 133–52, 2018.

DIAS, Y.; KEERTHAN, P.; MAHENDRAN, M. Fire performance of steel and plasterboard sheathed non-load bearing LSF walls. Fire Safety Journal, United Kingdom, v. 103, n. 10, p. 1–18, 2019.

DINABURG, J.; GOTTUK, D. Smoke alarm nuisance source characterization: review and recommendations. Fire Technology, Netherlands, v. 52, n. 5, p. 1197–233, 2016.

EUROPEAN COMMITTEE FOR STANDARDIZATION. EN 13501-1:2018 – Fire classification of construction products and building elements: Classification using data from reaction to fire tests. CEN. Brussels: Editora European Committee for Standardization, 2018.

GISSI, E.; RONCHI, E.; PURSER, D. A. Transparency vs magic numbers: the development of stair design requirements in the Italian Fire Safety Code. Fire Safety Journal, United Kingdom, v. 91, n. 3, p. 882–91, 2017.

GRIMWOOD, P.; SANDERSON, I. A. A performance-based approach to defining and calculating adequate firefighting water using s.8.5 of the design guide BS PD 7974:5:2014 (fire service intervention). Fire Safety Journal, United Kingdom, v. 78, n. 11, p. 155–67, 2015.

GUILLAUME, E.; FATEH, T.; SCHILLINGER, R.; CHIVA, R.; UKLEJA, S. Study of fire behaviour of facade mock-ups equipped with aluminum composite material-based claddings, using intermediate-scale test method. Fire and Materials, United Kingdom, v. 42, n. 5, p. 561–77, 2018.

HAVEY, P.; MUNOZ, M.; KLASSEN, M.; HOLTON, M.; OLENICK, S. Variability and error rates in fire alarm audibility measurements and calculations. Fire Technology, Netherlands, v. 54, n. 6, p. 1725–44, 2018.

HIDALGO, J. P.; WELCH, S.; TORERO, J. L. Performance criteria for the fire safe use of thermal insulation in buildings. Construction and Building Materials, United Kingdom, v. 100, n. 12, p. 285–97, 2015.

INTERNATIONAL CODE COUNCIL [ICC]. International Building Code (IBC). USA, 2018.

JATHEESHAN, V.; MAHENDRAN, M. Thermal performance of LSF floors made of hollow flange channel section joists under fire conditions. Fire Safety Journal, United Kingdom, v. 84, n. 8, p. 25–39, 2016.

KAMARA, J. M.; ANUMBA, C. J.; CUTTING-DECELLE, A.-F. Concurrent Engineering in Construction Projects. [s.l]: [s.n.], 2017,

KIFOKERIS, D.; XENIDIS, Y. Constructability: outline of past, present, and future research. Journal of Construction Engineering and Management, Baltimore, v. 143, n. 8, p. 04017035, ago. 2017.

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing systematic literature reviews in software engineering. Durham, Keele University, 2007.

KULIGOWSKI, E.; PEACOCK, R.; RENEKE, P.; HAGWOOD, C.; OVERHOLT, K.; ELKIN, R.; AVERILL, J.; HOSKINS, B.; RENEKE, P.; WIESS, E.; OVERHOLT, K.; AVERILL, J. Movement on stairs during building evacuations NIST technical note 1839 evacuations. National Institute of Standards and Technology Technical Note, Gaithersburg, n. 1, 2015, 213 p.

LAW, M.; BEEVER, P. Magic numbers and golden rules. Fire Technology, Netherlands, v. 31, n. 1, p. 77–83, 1995.

LI, P.; PARKINSON, T.; SCHIAVON, S.; FROESE, T.; DE DEAR, R.; RYSANEK, A.; STAUB-FRENCH, S. Improved long-term thermal comfort indices for continuous monitoring. Energy and Buildings, Netherlands, v. 224, n. 10, p. 110270, 2020.

LUCHERINI, A.; MALUK, C. Intumescent coatings used for the fire-safe design of steel structures: a review. Journal of Constructional Steel Research, Netherlands, v. 162, n. 11, p. 105712, 2019.

MA, G.; TAN, S.; SHANG, S. The evaluation of building fire emergency response capability based on the CMM. International Journal of Environmental Research and Public Health, Switzerland, v. 16, n. 11, p. xx–xx, 2019.

MA, G.; WU, Z. BIM-based building fire emergency management: combining building users’ behavior decisions. Automation in Construction, Netherlands, v. 109, n. 1, p. 102975, 2020.

MALUK, C. Motivation, drivers and barriers for a knowledge-based test environment in structural fire safety engineering science. Fire Safety Journal, United Kingdom, v. 91, n. 7, p. 103–11, 2017.

MALUK, C.; WOODROW, M.; TORERO, J. L. The potential of integrating fire safety in modern building design. Fire Safety Journal, United Kingdom, v. 88, n. 12015, p. 104–12, 2017.

NATIONAL FIRE DATA CENTER, Fire in the United States. US Fire Administration, v. 20th Edition, n. 11, 2019.

PETERSEN, K.; VAKKALANKA, S.; KUZNIARZ, L. Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology, Netherlands, v. 64, n. 8, p. 1–18, 2015.

SABAPATHY, P.; DEPETRO, A.; MOINUDDIN, K. Probabilistic risk assessment of life safety for a six-story commercial building with an open stair interconnecting four stories: a case study. [s.l.]: Springer Us, 2019. v. 55

WANG, Y.; YUAN, G.; HUANG, Z.; LYU, J.; LI, Q.; LONG, B. Modelling of reinforced concrete slabs in fire. Fire Safety Journal, United Kingdom, v. 100, n. 9, p. 171–85, 2018.

ZHANG, Y.; SHEN L.; REN Y.; WANG J; LIU, Z.; YAN H. How fire safety management attended during the urbanization process in China? Journal of Cleaner Production, United Kingdom, v. 236, n. 11, p. 117686, 2019.

Descargas

Publicado

2022-10-25

Cómo citar

Viegas, R. M., Lima, J. P., Carvalho, M. T., & Silva, C. F. e. (2022). Comportamiento frente al fuego en edificios: conocimientos académicos y análisis de perspectiva. Interações (Campo Grande), 23(3), 801–816. https://doi.org/10.20435/inter.v23i3.3661